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The elastic interaction between an edge dislocation
and a loop in BCC systems
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Abstract

We have evaluated the interaction between an edge dislocation and a loop in BCC metals. In this calculation, we used
the linear elastic theory to estimate their long range interaction, and we incorporated the change in the normal vector of the
loop in the stress field originating from the edge dislocation. The rotation of the loop significantly modifies the interaction
and strongly affects the microstructural evolution and the irradiation hardening.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The 14 MeV neutrons generated by DT fusion
reactions produce high-energy collision cascades.
Recent molecular dynamic (MD) simulations show
that self-interstitial atoms produced in these cas-
cades directly agglomerate into small dislocation
loops [1,2], and many of them are glissile in nature
[3,4]. Since the activation energies for migration of
these small loops are much lower than that of the
mono-interstitials, they will subsequently diffuse
and interact with stress fields inside the material that
arise from network dislocations or other loops. As a
result, the evolution of the dislocation depends not
only on the capture of individual self-interstitials
but also on the capture rate of these small loops.
The strain field of these mobile loops gives rise to
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a strong interaction with other dislocations that will
impact the bias for void swelling. Ghoniem et al.
demonstrated both the force and torque exerted
on the loops by the strain field of a nearby disloca-
tion [5]. In their study, the loops were assumed to be
rigid and circular in shape even when the torque and
force from the dislocation was relatively large.
Wolfer et al. derived an equation for the change in
normal vector in order to minimize the sum of the
self-energy and interaction energy of the loop [6].
Okita et al. later applied their equations to various
combinations of the Burgers vector for both types
of the dislocations in FCC systems, and demon-
strated that the rotation of the loop can significantly
change the interaction, a conclusion which would
not have been obtained without incorporating the
rotation [7].

In this paper, we employ the derivation by
Wolfer et al. [6] and apply it to the BCC system,
where we evaluate the interaction between an edge
dislocation and a glissile loop.
.
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2. Theoretical consideration of the loop rotation

Since the detailed derivations have been pub-
lished elsewhere [6,7], we will only briefly summarize
them in this paper.

It is possible to define the energy of a prismatic
interstitial loop as

E ¼ W � bAðn̂Þ � ~tð~rÞ � n̂
� �

; ð2-1Þ

where W is the self-energy for the loop and A is
the area of the loop. The quantities ~b;~t and ~n are
the Burgers vector of the loop, traction vector of
the dislocation, and the normal vector of the loop,
respectively. The loop normal vector~n is in principle
independent of~r, but it is correlated by virtue of its
dependence on the stress field~tð~rÞ. A derivation of
this relation is required to evaluate the interaction.
To minimize the total energy in terms of ~n, the
balance of the force and the balance of the torque
exerted on the loop were calculated, and the final
equation can be written as

sgnðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1� kÞ

p
KðkÞ ¼ j~tj � sinc; ð2-2Þ

where c is the angle between the traction vector~t,
and the Burgers vector ~b, and
ffiffiffi
k
p
¼ sin a; ð2-3Þ

a is the angle between the Burgers vector and the
normal vector of the loop, defining the rotational
angle.

KðkÞ ¼ W 0

A0

� 2

pk
ffiffiffiffiffiffiffiffiffiffiffi
1� k
p ð1� 3kgþ 2k2gÞEðkÞ

�

�ð1� kÞð1� kgÞKðkÞ
�
; ð2-4Þ
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Fig. 1. The rotational angle of the loop as a function of x/h, where h is
dislocation and the glissile loop, the Burgers vectors of which are paralle
the loop radius is chosen to be 0.5 nm.
W0 and A0 are the self-energy and the area of the
circular loop, respectively, and g is an empirical
factor. We assume that the loop is circular in the
absence of the stress field other than the loop itself,
and g is chosen to be 1/4. This assumption will
not affect the calculation results, however. K(k)
and E(k) are the complete elliptic integral of the first
kind and second kind, respectively [8]. At a given
position along the glide cylinder, the angle c be-
tween the traction vector and the Burgers vector is
known, while a needs to be determined. Therefore,
the Eq. (2-2) must be solved numerically for k,
and hence for the angle a.

We will now consider the interaction between a
glissle loop and an edge dislocation in BCC systems,
the Burgers vectors of which is a0/2h1 11i.
3. Results

3.1. Parallel Burgers vector, ~B ¼ a0

2
½111�,

~b ¼ a0

2
½11 1�

In this case, the loop moves along the glide cylin-
der. Alternatively, one may consider the center of the
loop to be stationary while the edge dislocation
moves on its glide plane. Within the stress field of
the edge dislocation, the loop rotates. The rotational
angle is plotted in Fig. 1 as a function of the distance
ratio, x/h. In this calculation, h is chosen to be
1.5 nm, and the loop radius is set to be 0.5 nm. It
is notable that the loop remains rotated away from
a = 0 even at far distances, and that the loop sud-
denly flips and changes the orientation of the normal
vector when it moves from the attractive area into
B= 1/2[111]

b= 1/2[111]
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chosen to be 1.5 nm, and the spatial relationship between the line
l. Note that the horizontal scale is logarithmic. In this calculation,
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Fig. 2. The change in the energy as a function of x/h, where h is
chosen to be 1.5 nm. Note that the horizontal scale is logarithmic.
The spatial relationship between a line dislocation and a loop is
shown in Fig. 1. The Burgers vectors are parallel. In this
calculation, the loop radius is chosen to be 0.5 nm.
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Fig. 3. The spatial relationship between the line dislocation and
the loop, and the definition of the origin and sign for the results in
Figs. 4 and 5. The Burgers vector of the line dislocation, the glide
plane and the line vector are ~B ¼ a0

2
½111�, ð10�1Þ and ½1�21�,

respectively. The Burgers vector of the loop is ~b ¼ a0

2
½11�1�.
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Fig. 4. The rotational angle as a function of x/h. The spatial
distribution of the line dislocation and the loop is shown in Fig. 3.
The Burgers vectors of the dislocation and the loops are
~B ¼ a0

2
½111� and ~b ¼ a0

2
½11�1�, respectively. Note that the hori-

zontal scale is logarithmic. h and the loop radius are chosen to be
1.5 nm and 0.5 nm, respectively.
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the repulsive one. Fig. 2 shows the change in the
interaction energy as a function of the distance,
x/h. The change in the energy consists of two parts,
namely the change in the self-energy of the loop as
it rotates in the stress field, and the interaction
energy. Although, the change in the energy is not
so large in absolute term at far distances, it is suffi-
cient to impose a drift on the otherwise random
motion of a loop, leading to its eventual capture in
the vicinity of the dislocation. The capture volume
becomes measurably larger when the loop rotation
is included.

3.2. Non-parallel Burgers vector, ~B ¼ a0

2
½111�,

~b ¼ a0

2
½11�1�

There are several slip planes in BCC systems, and
we choose the ð10�1Þ in this paper. Correspondingly,
the line vector of the dislocation is ½1�21�. Fig. 3
shows the spatial relationship between an edge dislo-
cation and a loop. The intersection between the glide
cylinder and the extrapolation of the inserted half
plane is chosen to be the origin, with the signs of
the direction defined as shown in Fig. 3. Fig. 4 shows
the rotational angle as a function of x/h. Even at far
distances, the loop rotates, and the angle increases as
it approaches the dislocation. It rotates most at
the closest approach. Fig. 5 shows the change in
the energy as a function of the distance ratio, x/h.
There are two stable points along the glide cylinder.
Since the absolute value of the interaction energy is
much larger than the thermal energy even at far dis-
tances, glissile loops generated directly by collision
cascades at far distances will eventually be captured
by the dislocation and move to the stable point along
the glide cylinder. When we include the rotation, the
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Fig. 5. The change in the energy as a function of x/h. The spatial
distribution of the line dislocation and the loop is shown in Fig. 3.
The Burgers vectors of the dislocation and the loops are
~B ¼ a0

2
½111� and ~b ¼ a0

2
½11�1�, respectively. Note that the hori-

zontal scale is logarithmic. h and the loop radius are chosen to be
1.5 nm and 0.5 nm, respectively.
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activation barrier to come into the most stable point
(x/h = �3.23) decreases, and some of the loops will
move into the most stable point. The absolute value
of the interaction energy is much stronger when we
include the loop rotation. The loop cannot easily
escape from the most stable position, because the
activation barrier is much larger.

4. Discussions and conclusions

In this paper, we used the elastic theory and
evaluated the interaction between a loop and a line
dislocation. One of the major points of this study is
that we include the change in the normal vector of
the loop in order to make contact with atomistic
simulations [9]. We demonstrated that the rotation
of the loop can strongly change the interaction.

Recent MD simulations showed that loops or
clusters can be obstacles to dislocation motion with-
out physically touching the dislocations [10], and
can thereby induce irradiation hardening. The abso-
lute value of the interaction energy becomes larger
by including the loop rotation; hence the stress
required for the line dislocation to move against
the interaction becomes larger.

In this calculation, we do not consider the core
energy of the loop, which is a function of the rota-
tional angle of the loop. Further studies are
necessary using by MD simulations to evaluate the
effect of the rotation on the core energy of a loop,
although the core energy may not change signifi-
cantly by the rotation.

We showed that the loop can come to the close
vicinity of the dislocation with the one-dimensional
glide motion along the glide cylinder. However, with
only glide motion, the loop will most likely not be
absorbed by the dislocation. There would be no
bias unless the loop moves perpendicular to its
Burgers vector direction and be absorbed by the
dislocation. Further studies are required to clarify
this mechanism.
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